UBC Geological Engineering

GEOLOGICAL ENGINEERING UNDERGRADUATE STUDENT GUIDE

University of British Columbia

2025-2026

Update: June 20, 2025

Contents

Contents	1
Director's Welcome	2
New Program Changes!	2
Administrative Structure of the Program	3
Getting Help	3
Workday	3
Course Registration	3
Advising	4
Prerequisites	4
Program Requirements	5
Program Curriculum	5
Engineering Design Project	6
Field Schools	7
Complementary Studies	7
Technical Electives	7
Specialization (Technical Elective Selection)	8
Geotechnical Interest	8
Environmental Interest	9
Geohazards Interest	10
Critical Minerals Interest	10
Mix and Match Interest	11
P.Eng. and P.Geo.	11
Program Changes and Year Standing	12
Schedule Conflicts	12
Applied Science Co-Op	12
Coordinated International Experience and International Exchange	14
Appendix 1: List of Pre-Approved Technical Electives	15

Director's Welcome

To our incoming 2nd year students, welcome to UBC Geological Engineering!

Introduced in 1921, our program was the first of its kind worldwide, whether Geological Engineering or its closely-related offshoots of Geotechnical Engineering, Engineering Geology or Applied Geology. Our program is also widely recognized as one of the top Geological Engineering programs in the world, and around it, Vancouver has grown to be a key international centre for the geotechnical, mining, and energy resource sectors. The strong support we receive from industry and our alumni allows us to expose our 100+ students to the remarkable projects carried out by local companies and the career opportunities that await you when you graduate.

You are also automatically a member of GeoRox – the student club of the UBC Geological Engineering program. GeoRox is one of the most active student clubs on campus and plays a pivotal role in enriching the student experience by organizing mentoring and professional outreach events, such as the annual Alumni & Industry Dinner and the Distinguished Lecture, as well as design competitions and field trips where students can escape the classroom and be exposed to the working environment. I strongly encourage you to get involved.

The purpose of this guide is to give you information about the structure and course requirements in the Geological Engineering program. You should use this guide to help you plan your degree program. Our program is structured to include a set of core course requirements that all students must fulfill to graduate. In addition, there are a number of electives that allow you to tailor the program to your individual interests.

To our returning 3rd and 4th year students, welcome back! This guide supersedes previous years' student guides. <u>Please pay close attention where program changes have been noted</u>. But remember, the official program is the one posted online in the UBC Calendar, which can be accessed through the link below:

Geological Engineering entry in the UBC Calendar

For additional information, you can also consult the Geological Engineering website: http://www.geoeng.ubc.ca/.

New Program Changes!

Two years ago, in response to changes by the Engineers Canada Accreditation Board regarding recommended reductions to the overall credit load in engineering programs, we reduced the number of unconstrained technical electives in Geological Engineering, from 12 to 9 credits in 4th year and 6 to 3 credits in 3rd year. These changes reduced the overall credit total from 39 to 36 credits in 4th year and 42 to 39 credits in 3rd year. Same as last year, this recent reduction in credit load is available to all Geological Engineering students now regardless of your year of standing.

These changes should be reflected in Workday. If there are any questions, please contact the program Director (see Advising). Remember that you are responsible for ensuring that you meet all degree requirements to be eligible to graduate.

Administrative Structure of the Program

Geological Engineering is an interdisciplinary program in the Faculty of Applied Science and is housed in the Department of Earth, Ocean and Atmospheric Sciences. Oversight is provided by the Geological Engineering Board of Study. The undergraduate program leads to a BASc or "Engineering" degree. This degree can be obtained with or without participation in the Co-op program. All graduates from the program will receive the designation "BASc in Geological Engineering" on their degree, and because the program is accredited by Engineers Canada, are eligible to register as a P.Eng. after meeting the professional experience, law and ethics requirements set out by the governing body in the jurisdiction you wish to register (e.g., Engineers and Geoscientists British Columbia).

Getting Help

Workday

There are several sources of help and advising for the program. <u>Workday</u> is a tool that allows you to track your program, the course requirements you have fulfilled, and those still required for graduation.

<u>Tip</u>: When using Workday, look at your Academic Progress Report to visualize your degree progress. But remember, Workday is a tool and not the official record of whether you have fulfilled your degree requirements. It is generally correct, but might not be programmed for every option. For example, Workday will recognize most of the popular courses taken as technical electives, but there are other courses that are also acceptable that will appear as invalid. If this happens to you, or if you have any questions regarding your degree requirements, please contact the program Director (see Advising).

Course Registration

The core courses in GEOE have been organized so that the times for lectures and labs in each year of standing are free of scheduling conflicts. However, you are responsible for registering separately for all courses listed for your year in the <u>UBC Calendar</u> and ensuring that you have no conflicts and meet all prerequisites. *Only the instructor for the course can grant a student request to waive a prerequisite*.

Course registration must be carried out through the host department offering the course. The following are the procedures for the courses most common to the Geological Engineering program:

EOSC courses:	Please contact our Senior Program Assistant, Undergraduate Programs, Ian Ayeras (<u>iayeras@eoas.ubc.ca</u>).	
CIVL courses:	Please complete the Civil Engineering online course request form: https://civil.ubc.ca/course-registration-form/	
	Note that Civil generally does not process requests for Technical Electives until one or two weeks before the start of each term. Further nformation can be found on their <u>FAQ</u> .	
MINE courses:	Please contact the Mining main office: https://mining.ubc.ca/contact/	
Complementary Studies courses:	These are a special category of courses that are common to all engineering programs to meet specific requirements of the Engineers Canada Accreditation Board. They include the "Humanities and Social Sciences" electives and "Impact of Engineering on Society, Sustainability and Environmental Stewardship" elective.	
First-Year courses:	The 1 st year program falls under the jurisdiction of Engineering Academic Services. For any 1 st year courses that still need to be completed or are not appearing correctly in Workday, please contact Engineering Academic Services.	

Advising

For questions regarding the program, advising, or approval of courses and technical electives, please contact the **Director of Geological Engineering**, **Prof. Scott McDougall** (smcdouga@eoas.ubc.ca). You can also drop by his office: EOS-South 255.

For questions related to transfer credits, yet-to-be-completed 1st year requirements or program requirements listed as Complementary Studies electives, contact <u>Engineering Academic Services</u> in the lobby of the Kaiser Building.

For questions related to Co-op, Go Global, Coordinated International Exchange, etc., contact the respective offices for these programs.

For the student perspectives on courses and other student experiences, talk to **senior GeoRox students** in the program. They are a great resource!

<u>Prerequisites</u>

The waiving of prerequisites must be obtained from the course instructor. Note that some instructors are willing to waive prerequisites for students outside their department if the student has an equivalent course from their program of study. However, this is at the discretion of the instructor.

Program Requirements

Program Curriculum

The tables below outline the program curriculum for Geological Engineering based on the 2025/26 UBC Calendar). If there are any discrepancies, please note that the online UBC Calendar is the official record of the courses required for completing the program. Remember: It is your responsibility to check that your program can be completed according to your preferred timeline for graduation. It is also your responsibility to check that your courses fit together into a workable timetable and that you have the required prerequisites. If you have any questions, please contact the Geological Engineering Director to arrange a meeting.

<u>Tip</u>: Remember to check out <u>Workday</u>. It will help you make informed decisions regarding your academic program.

	2 nd Year		Credits
	APSC 201	Technical Communication	3
	CIVL 215	Fluid Mechanics I	4
_	CIVL 230	Solid Mechanics	4
7	EOSC 210	Earth Science for Engineers	3
	EOSC 220	Introductory Mineralogy	3
	MATH 253	Multivariable Calculus	3
	CIVL 210	Soil Mechanics I	4
	EOSC 213	Computational Methods in Geological Engineering	3
T2	EOSC 221	Introductory Petrology	3
-	EOSC 223 ¹	Field Techniques	3
	EOSC 240	Site Investigation	3
	STAT 251	Elementary Statistics	3
		Total Credits	39

¹ Includes one-week field school at the end of Term 2.

	3 rd Year		Credits
	CIVL 311	Soil Mechanics II	4
	EOSC 323	Structural Geology I	3
7	EOSC 329	Quantitative Groundwater Hydrology	3
	EOSC 330	Principles of Geomorphology	3
	EOSC 350	Environmental, Geotechnical, and Exploration Geophysics I	3
	CIVL 316	Hydrology and Open Channel Flow	4
	MINE 303	Rock Mechanics Fundamentals	4
T2	Field School Re	equirement² (choose one of):	
	EOSC 328	Field Geology	3
	EOSC 428	Quantitative Groundwater Hydrology	3

	Complementary Studies: Impact of Engineering on Society ³				
	Complementar	y Studies: Humanities³		3	
	Technical Elec	tives ⁴		3	
T2	Geology Electi	ve (choose one of):			
Ö	EOSC 320	Sedimentology			
\vdash	EOSC 321	Igneous Petrology			
	EOSC 322	Metamorphic Petrology		3	
	EOSC 331	Introduction to Mineral Deposits			
	EOSC 332	Tectonic Evolution of North America			
			Total Credits	39	

² Taught at the end of Term 2 after final exams. See details below under Field Schools.

⁴ See suggestions below under section on Specialization (Technical Elective Selection).

	4 th Year		Credits
	CIVL 402	Professionalism and Law in Civil Engineering	3
<u> </u>	CIVL 410	Foundation Engineering I	3
-	EOSC 433	Geological Engineering Practice I - Rock Engineering	3
	EOSC 445	Engineering Design Project	6 ⁵
	CIVL 411	Foundation Engineering II	3
T2	EOSC 429	Groundwater Contamination	3
	EOSC 434	Geological Engineering Practice II - Soil Engineering	3
	Technical Elect	ives ⁶	9
	Complementar	Studies: Engineering Economics (choose one of):	
	CHBE 459 Chemical and Biological Engineering Economics		3
T2			
o	CPEN 481 Economic Analysis of Engineering Projects		
7	ELEC 481 Economic Analysis of Engineering Projects		
	MECH 431	Engineering Economics	
	MINE 396	Engineering Economics	
	MTRL 455	Economic Aspects of Materials Engineering	
		Total Credits	36

⁵ Must be taken continuously across Term 1 and 2 in the same academic year.

Engineering Design Project

Students should wait until they have 4th year standing before taking EOSC 445 *Engineering Design Project*. This two-term course is our capstone design experience and will involve team work, design, analysis, and technical communication. EOSC 445 builds upon three other design-focused courses: EOSC 433 *Geological Engineering Practice I - Rock Engineering;* EOSC 434 *Geological Engineering Practice II - Soil Engineering;* and EOSC 429 *Groundwater Contamination*.

³ See Engineering Academic Services details and list of eligible courses.

⁶ See suggestions below under section on Specialization (Technical Elective Selection).

Because EOSC 445 is a 6 credit course that spans both Term 1 and 2, it <u>MUST</u> be taken consecutively in the same academic year; students should <u>not</u> plan a co-op work term or international exchange in their final year when they would be taking this course.

Field Schools

There are two field-school course requirements in the program: EOSC 223 Field Techniques, and one of either EOSC 328 Field Geology or EOSC 428 Field Techniques in Groundwater Hydrology. These field schools run after final exams in April. Please note that these courses may or may not require special fees separate from tuition that are charged to partially cover field costs. Information regarding any charges is usually provided in advance, but if you are working with a tight budget, you can check with our Senior Program Assistant, Ian Ayeras (iayeras@eoas.ubc.ca).

Note that if you need to take your 3rd year field school at the end of your 4th year right before graduating (many of our students do this), procedures are in place to make sure your grades will be submitted in time for approval to graduate at the Spring convocation ceremony.

Complementary Studies

Complementary Studies are a special set of unconstrained electives that are required for all Applied Science students. Minimum requirements are identified related to "Professional Development", "Communications", "Impact of Technology on Society", "Engineering Economics" and "Humanities and Social Sciences". Students are referred to the Engineering Academic Services website for a listing of eligible courses to meet these requirements.

Technical Electives

Technical electives provide you the means to tailor your program to your interests. The next section speaks to specializations in Geological Engineering and provides suggested courses. A full list of pre-approved technical elective courses is provided at the end of this document in Appendix 1. Note that this pre-approval only applies to the courses qualifying as an acceptable technical elective; course registration is at the discretion of the host department offering the course and is subject to the course not being full and that you meet any prerequisites.

Note 1: Technical electives MUST be 300 or 400 level courses. 100 and 200 level courses are not eligible as technical electives.

Note 2: The course level of the technical electives DOES NOT have to match your standing or year relative to the program requirements listed in the UBC Calendar. For example, the technical electives requirement listed under the 3rd year program does not need to be restricted to 300 level courses, and those listed under the 4th year program do not need to be restricted to 400 level courses. In both cases, you may take any approved 300/400 level technical elective to meet either the 3rd or 4th year technical electives requirements.

<u>Note 3</u>: The list in Appendix 1 is not comprehensive and there may be new courses or other courses you are interested in that are equally acceptable. However, please seek the formal approval of the Geological Engineering Director by email before you enroll in a technical elective course if it is not listed here.

Note 4: 300 or 400 level EOSC courses that are listed as counting towards a constrained elective, if not selected for the constrained elective, may be taken as a technical elective. For example, you can take both EOSC 328 and EOSC 428, counting one towards the field school requirement and the other as a technical elective. Similarly, you can take two or more of EOSC 320, 321, 322, 331 and 332, and count one towards your geology elective and the other(s) towards your technical electives.

Specialization (Technical Elective Selection)

Geological Engineering has four areas of specialization you can choose from to focus your technical electives, or you can mix and match a little from each: i) Geotechnical, ii) Environmental, iii) Natural Hazards, and iv) Critical Minerals (Natural Resources). Note that you are not required to specialize! You are free to choose your technical electives, with the restriction that they must either be 300 or 400 level courses and relevant to Geological Engineering in a very broad sense. Courses that explicitly state in their calendar description that they are not eligible for credit in the Faculty of Applied Science are not eligible.

The lists that follow are only suggestions for those who wish to expand upon the coverage of these specializations already built into your required courses. A full listing of preapproved technical electives is included in Appendix 1.

Geotechnical Interest

Broadly speaking, this is the application of engineering and geological understanding to the needs of civil, mining, and energy projects (site investigations, engineering design, project planning, construction, environmental protection, etc.). Technical electives you will want to consider include those that provide additional soil and rock mechanics (e.g., MINE 403), geological field mapping skills (e.g., EOSC 328 instead of EOSC 428), and specifics regarding geotechnical practice in different industrial settings (e.g., dam construction via CIVL 413, mine waste management via MINE 380, etc.). You will gain skills relevant to the design of foundations, tunnels, hydroelectric dams, open pit and underground mines, natural hazard mitigation works, environmental protection works, highway/railway/pipeline routes, slope stabilization, forestry, and many other important projects. You will be able to find employment in consulting companies, construction, mining and energy production firms, as well as government. These jobs seek to balance the needs of society while working to ensure public safety and minimize impacts on the environment.

Relevant electives:

CIVL 413 Design of Earth Dams and Containment Structures

CIVL 417 Coastal Engineering

EOSC 320 Sedimentology

EOSC 328 Field Geology

EOSC	332	Tectonic Evolution of North America
FRST	385	Watershed Hydrology
GEOS	308	Quaternary and Applied Geomorphology
GEOS	309	Geographical Sciences Field Course
GEOS	370	Advanced Geographic Information Science
GEOS	373	Introductory Remote Sensing
GEOS	406	Watershed Geomorphology
IGEN	450	Pipeline Engineering
MINE	380	Mine Waste Management
MINE	403	Rock Mechanics Design

Environmental Interest

An essential component of engineering design is recognizing and mitigating/minimizing the impacts that engineering projects can have on the natural environment. The technical electives you will want to consider for this specialization are similar to those for the Geotechnical interest; the two are closely related and are equally important for careers in Geological Engineering. However, to specialize more you may want to consider additional courses related to hydrogeochemistry and groundwater remediation (e.g., EOSC 430, 431), hydrogeological field investigations (e.g., EOSC 428 instead of EOSC 328), water resource engineering (e.g., CIVL 415, 416), and the design of landfills, tailings dams and environmental cleanup (e.g., CIVL 406, 408, MINE 380, 455). Your employment prospects will be similar to those of your Geotechnical focused colleagues, including consulting and mining/energy companies who have specialized environmental groups.

Relevant electives:

CIVL	406	Water Treatment and Waste Management
CIVL	407	Environmental Laboratory Analysis
CIVL	408	Geo-Environmental Engineering
CIVL	415	Water Resource Engineering
CIVL	416	Environmental Hydraulics
CIVL	475	Environmental Stewardship in Civil Engineering
CONS	330	Conservation Science and Sustainability
CONS	440	Conservation Decision-Making and Policy
CONS	481	Conservation Planning in Practice
ENVR	410	Energy, Environment, and Society
ENVR	420	Ecohydrology of Watersheds and Water Systems
ENVR	430	Ecological Dimensions of Sustainability
EOSC	340	Climate Change: Causes and Solutions
EOSC	345	Climate Change: Evidence and Impacts
EOSC	428	Field Techniques in Groundwater Hydrology
EOSC	430	Aqueous Geochemistry
EOSC	431	Groundwater Remediation
GEOG	310	Environment and Sustainability
GEOG	312	Climate Change: Science and Society
GEOG	314	Analysing Environmental Problems
GEOG	318	Sustainability in a Changing Environment
GEOG	319	Environmental Impact Assessment
GEOG	410	Environment and Society
GEOG	412	Water Management: Theory, Policy, and Practice

GEOS	305	Introduction to Hydrology
GEOS	406	Watershed Geomorphology
ISCI	360	Systems Approaches to Regional Sustainability
ISCI	361	Field Course: Regional Sustainability
MINE	380	Mine Waste Management
MINE	455	Mine Water Management
MINE	486	Mining and the Environment

Geohazards Interest

Owing to global population pressures, more people live in areas susceptible to natural hazards, increasing their impact on communities, infrastructure and engineering projects. To assess, manage and mitigate this increasing exposure, Geological Engineers are called upon to characterize, analyse and forecast hazards to deliver avoidance, prevention and/or protective measures. Key is the ability to quantify uncertainty in a changing climate and communicate with the public about geohazard issues. The technical electives you will want to consider are those that focus on the principles of different geohazard types (e.g., GEOG 316, GEOS 408), influencing factors (e.g., ATSC 313, EOSC 340), data analysis of magnitude, frequency and risk (e.g., CPSC 340, EOSC 410), and spatio-temporal visualization (e.g., DSCI 320, GEOS 370) and communication (e.g., APSC 402). Your employment prospects will be similar to those for the Geotechnical specialization, involving the same consulting companies, but also specialist firms and government agencies.

Relevant electives:

APSC 40	Living Language: Science and Society
ATSC 31	Renewable Energy Meteorology
CIVL 41	Coastal Engineering
CPSC 33	Applied Machine Learning
CPSC 34	Machine Learning and Data Mining
CPSC 44	Advanced Machine Learning
DSCI 32	Visualization for Data Science
ENVR 41	Energy, Environment, and Society
EOSC 32	Sedimentology
EOSC 32	Field Geology
EOSC 34	Global Climate Change
EOSC 34	Climate Change: Evidence and Impacts
EOSC 41	Geoscientific Data Analysis and Empirical Modelling
GEOG 31	Geography of Natural Hazards
GEOS 30	Quaternary and Applied Geomorphology
GEOS 30	Geographical Sciences Field Course
GEOS 37	Advanced Geographic Information Science
GEOS 37	,
GEOS 40	The Changing Cryosphere
IGEN 45	Pipeline Engineering

<u>Critical Minerals Interest</u>

This area of interest trains Geological Engineers for work in the mineral exploration or energy development industries. You will still obtain the same engineering skills to allow you

to work in functions described under Geotechnical and Environmental interests, but with options to focus more on geology and mineral deposits (e.g., EOSC 331, 424), geological mapping (e.g., EOSC 328 instead of EOSC 428), mining methods (e.g., MINE 485) and indigenous rights (MINE 470). You will be able to find employment with companies involved directly in resource exploration, development and production, or with companies providing services such as mineral resource consulting.

Relevant electives:

ENVR	410	Energy, Environment, and Society
EOSC	320	Sedimentology
EOSC	321	Igneous Petrology
EOSC	322	Metamorphic Petrology
EOSC	328	Field Geology
EOSC	331	Introduction to Mineral Deposits
EOSC	332	Tectonic Evolution of North America
EOSC	421	Advanced Sedimentology
EOSC	422	Structural Geology II
EOSC	424	Advanced Mineral Deposits
MINE	395	Mineral Deposit Modeling
MINE	406	Mine Project Valuation and Risk Assessment
MINE	420	Applied Geostatistics
MINE	470	Indigenous Peoples and Mining in Canada
MINE	485	Cave Mining Systems: Design and Planning
MINE	486	Mining and the Environment

Mix and Match Interest

If your interests are broad and you would like exposure in two, three or all four areas, you can mix and match electives as you prefer.

P.Eng. and P.Geo.

Geological Engineering is a professional program accredited by the <u>Engineers Canada Accreditation Board</u>. Students who graduate from an accredited BASc program automatically meet the educational requirements for registering as a professional engineer and only need to complete the professional experience and law and ethics requirements set out by the governing body in the jurisdiction you wish to register (e.g., Engineers and Geoscientists British Columbia). Professional engineers use the designation P.Eng.

Because of the heavy geology content in the Geological Engineering program, our graduates may also qualify to register as a Professional Geoscientist with the P.Geo. designation. To meet the educational requirements for a P.Geo., interested students need to consult the knowledge/course requirements in the jurisdiction you wish to register. In British Columbia (via Engineers and Geoscientists British Columbia), you can find the checklists and instructions here. Note that there are two UBC-specific checklists dated from 2016 for either the Geology or Environmental Geoscience discipline options, and a third generic list dated from 2011 for a Geophysics discipline option.

Program Changes and Year Standing

We are always looking for ways to improve the Geological Engineering program, resulting in periodic changes to the courses needed to fulfill the degree requirements. This can sometimes be confusing in years where new requirements have been introduced. The rule is that you must complete the 2nd, 3rd or 4th year of your program as it appears in that year's UBC Calendar when you received standing for the year you are in. For example, if you received 3rd year standing for the start of the 2025/26 academic year, you must complete the 3rd year program as it appears in the 2025/26 calendar. If you received 3rd year standing in 2024/25 but are completing part of 3rd year in 2025/26 (for example due to co-op or exchange), you must complete your 3rd year program as it appeared in the 2024/25 calendar.

Workday is programmed for this and is a useful tool to help you track which courses you need to complete. However, errors do sometimes occur in Workday and the official record of what courses you need to complete is the UBC Calendar. <u>Click here</u> to access UBC's archive of past calendars. If you have any questions, or would like permission to substitute an older program requirement with a newer option, please contact the Director of Geological Engineering (see Advising).

Schedule Conflicts

Where possible, we have tried to avoid course conflicts, particularly with core courses. However, as our program contains courses from many departments, it is impossible to ensure that all elective courses will fit into your schedule. We therefore encourage you to look at your 3rd and 4th year courses together, and plan your electives far in advance so that you acquire the proper prerequisites for the electives you are most interested in. You may also find it easier to take a 4th year course in 3rd year so that you can fit a technical elective into your timetable in 4th year.

<u>Tip</u>: Make a list of courses you wish to take, and then check the course schedules. You will see right away where potential conflicts with lecture times and labs occur. Then, check that all your prerequisites are okay.

Applied Science Co-Op

Co-op offers a structured opportunity to gain some valuable practical experience while you complete your degree. In most years, the job market for Geological Engineering students is strong and you may be able to find your own position somewhere. However, all engineering disciplines can experience difficulties in finding work placements when the B.C. or Canadian economies are down. Although Co-op is not a job placement service, the program offers workshops, advisors and other resources that may benefit you. Many of the companies that hire preferentially from our program also say that they can give a student a richer work experience when it involves an 8-month Co-op placement compared to a 4-month summer job. But the Co-op program is optional and the choice is up to you.

Geological Engineering students interested in Co-op can find more information, including application requirements and procedures, through the <u>Applied Science Co-op website</u>.

The 3rd year of the Geological Engineering program is designed to be especially flexible to facilitate Co-op experiences. For Co-op, students have the option of taking a combination of 4- and 8-month placements to meet the minimum Co-op requirements, up to a 16-month continuous work period (divided between two different company placements). Common schedules include:

4-12-4 Schedule	WINTER Term 1 (Sept – Dec)	WINTER Term 2 (Jan – April)	SUMMER (May – Aug)
YEAR 2	study	study	work-term 1
YEAR 3	study	work-term 2	work-term 3
YEAR 4	work-term 4	study	work-term 5
YEAR 5	study	study	graduation

8-4-8 Schedule	WINTER Term 1 (Sept – Dec)	WINTER Term 2 (Jan – April)	SUMMER (May – Aug)
YEAR 2	study	study	work-term 1
YEAR 3	work-term 2	study	work-term 3
YEAR 4	study	work-term 4	work-term 5
YEAR 5	study	study	graduation

16-4 Schedule	WINTER Term 1 (Sept – Dec)	WINTER Term 2 (Jan – April)	SUMMER (May – Aug)
YEAR 2	study	study	work-term 1
YEAR 3	work-term 2	work-term 3	work-term 4
YEAR 4	study	study	work-term 5
YEAR 5	study	study	graduation

4-16 Schedule	WINTER Term 1 (Sept – Dec)	WINTER Term 2 (Jan – April)	SUMMER (May – Aug)
YEAR 2	study	study	work-term 1
YEAR 3	study	study	work-term 2
YEAR 4	work-term 3	work-term 4	work-term 5
YEAR 5	study	study	graduation

Coordinated International Experience and International Exchange

The 3rd year of the Geological Engineering Program is designed to be especially flexible to facilitate an international exchange experience. Options include doing so through the Applied Science Coordinated International Experience (CIE) or UBC's GoGlobal. Note that both work best when the courses you take at the host university target meeting your unconstrained technical elective requirements.

Appendix 1: List of Pre-Approved Technical Electives

<u>Note</u>: The courses listed here are "pre-approved" with respect to qualifying as being eligible to be counted towards the technical elective requirements in Geological Engineering. Approval to register for these classes is at the discretion of the host department who may need to limit numbers due to classroom size. It is also your responsibility to check that you have the necessary pre-requisites for the courses listed here. In some cases, instructors may be willing to waive the pre-requisites, but you will need to check with them or through their department to make this request. Also note that not all classes are taught every year. Please consult the <u>UBC Calendar</u> to confirm which classes are being offered in the current year.

APSC	367	Humanitarian Engineering: Politics and Practice	W1
	402	Living Language: Science and Society	W2
	461	Global Engineering Leadership	S1
	462	Global Engineering Leadership Practicum	S2
ATSC	313	Renewable Energy Meteorology	W1 or W2
CIVL	301	Modelling and Decision-Making in Civil Engineering	W1
	305	Introduction to Environmental Engineering Applications	W2
	315	Fluid Mechanics II (4 credits)	W1
	320	Civil Engineering Materials	W1
	340	Transportation Engineering I	W2
	406	Water Treatment and Waste Management	W1
	407	Environmental Laboratory Analysis	
	408	Geo-Environmental Engineering	
	413	Design of Earth Dams and Containment Structures	W2
	415	Water Resource Engineering	
	416	Environmental Hydraulics	W1
	417	Coastal Engineering	W2
	418	Engineering Hydrology	W2
	426	Virtual Design and Construction	W1 or W2
	475	Environmental Stewardship in Civil Engineering	
CONS	330	Conservation Science and Sustainability	W2
	425	Sustainable Energy: Policy and Governance	W2
	440	Conservation Decision-Making and Policy	W1
	481	Conservation Planning in Practice	W1
CPSC	330	Applied Machine Learning	W1 or W2
	340	Machine Learning and Data Mining	W1 or W2
	440	Advanced Machine Learning	W2
DSCI	320	Visualization for Data Science	W1

ENVR	410	Energy, Environment, and Society	
	420	Ecohydrology of Watersheds and Water Systems	W2
	430	Ecological Dimensions of Sustainability	W1 or W2
	440	Analytical Methods in Sustainability Science	W2
EOSC	320	Sedimentology	W2
	321	Igneous Petrology	W1
	322	Metamorphic Petrology	W2
	326	Earth and Life Through Time	W1, W2, S1
	331	Introduction to Mineral Deposits	W1
	332	Tectonic Evolution of North America	W2
	340	Climate Change: Causes and Solutions	W1 or W2
	345	Climate Change: Evidence and Impacts	W2
	352	Geophysical Continuum Dynamics	W1
	353	Seismology	W2
	354	Analysis of Time Series and Inverse Theory	W1
	410	Geoscientific Data Analysis and Empirical Modelling	W1
	420	Volcanology	W1
	421	Advanced Sedimentology	W1 or W2
	422	Structural Geology II	W2
	424	Advanced Mineral Deposits	W2
	430	Aqueous Geochemistry	W1
	431	Groundwater Remediation	
	432	Fossil Fuels	W2
	442	Climate Measurement and Analysis (1 credit)	W1 or W2
	454	Applied Geophysics	W2
FOPR	388	Analytical Methods in Forest Hydrology	W1
FRST	385	Watershed Hydrology	W1
	443	Remote Sensing for Ecosystem Management	
GEOG	302	Climate Justice	W2
	310	Environment and Sustainability	W1, W2, S1
	312	Climate Change: Science and Society	W2
	313	Environmental Justice and Social Change	W2
	314	Analysing Environmental Problems	W2
	316	Geography of Natural Hazards	W2
	0.40	Sustainability in a Changing Environment	
	318	Sustainability in a Changing Environment	
	318	Environmental Impact Assessment	W1

	412	Water Management: Theory, Policy, and Practice	W1
	423	Development of Environmental Thought	W2
	497	The Arctic	W1
GEOS	305	Introduction to Hydrology	W1 or W2
	308	Quaternary and Applied Geomorphology	
	309	Geographical Sciences Field Course	S1
	370	Advanced Geographic Information Science	W1 or W2
	373	Remote Sensing: Monitoring Earth's Surface from Afar	W2
	405	Fluvial Geomorphology	
	406	Watershed Geomorphology	
	408	The Changing Cryosphere: Snow, Ice and Climate Change	W1 or W2
GEN	450	Pipeline Engineering	W1
	451	Pipeline Systems and Infrastructure	W2
SCI	360	Systems Approaches to Regional Sustainability	W1
	361	Field Course: Systems Approaches to Regional Sustainability	W2 or S1
MINE	302	Underground Mining and Design (4 credits)	W2
	304	Rock Fragmentation	
	310	Surface Mining and Design (4 credits)	W1
	331	Physical Mineral Processes	W1
	380	Mine Waste Management	W2
	395	Mineral Deposit Modeling	
	403	Rock Engineering Design	W2
	406	Mine Project Valuation and Risk Assessment	W2
	420	Applied Geostatistics	W2
	455	Mine Water Management	W2
	470	Indigenous Peoples and Mining in Canada	W1
	485	Cave Mining Systems: Design and Planning	W2
	486	Mining and the Environment	W2
	488	Heavy Oil Sand Mining and Processing	
PLAN	321	Indigeneity and the City	W2
	341	Smart Cities: Concepts, Methods and Design	W2
	351	Green Cities	W1
	425	Urban Planning Issues and Concepts	W2